Полупроводниковый диод — полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами).
В отличие от других типов диодов, принцип действия полупроводникового основывается на явлении p-n-перехода.
Плоскостные p-n-переходы для полупроводниковых диодов получают методом сплавления, диффузии и эпитаксии.
Диод ДГ-Ц25. 1959 г.
Диод Шоттки (также правильно Шотки) — полупроводниковый диод с малым падением напряжения при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. Диоды Шоттки используют переход металл-полупроводник в качестве барьера Шоттки (потенциальный барьер в приконтактном слое, равный разности работ выходов металла и полупроводника) вместо p-n перехода, как у обычных диодов. Допустимое обратное напряжение промышленно выпускаемых диодов Шоттки ограничено 250В, на практике большинство диодов Шоттки применяется в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков вольт.
Условное обозначение диода Шоттки по ГОСТ 2.730-73
Структура детекторного Шотки диода : 1 — полупроводниковая подложка; 2 — эпитаксиальная плёнка; 3 — контакт металл — полупроводник; 4 — металлическая плёнка; 5 — внешний контакт
Достоинства
Недостатки
Диоды Шоттки — составные части современных дискретных полупроводниковых приборов:
Сверхвысокочастотный диод — полупроводниковый диод, предназначенный для работы в сантиметровом диапазоне волн. Диод содержит между двумя сильно легированными областями высокой проводимости n+ и p+ активную базовую i-область с низкой проводимостью и большим временем жизни носителей заряда, то есть p-i-n-переход. Это позволяет снизить его емкость и повысить частоту работы элемента.
Проводимость диода зависит от длины волны, интенсивности и частоты модуляции падающего излучения. Обедненный слой существует почти во всей области собственной электропроводности, которая имеет постоянную ширину даже при обратном включении. Область собственной электропроводности может быть расширена с помощью увеличения зоны рекомбинирования электронов и дырок. Этим обуславливается применение p-i-n диодов в фотодетекторах.
Сверхвысокочастотные диоды подразделяют на:
Стабилитрон (диод Зенера) — полупроводниковый диод, предназначенный для стабилизации напряжения в источниках питания. По сравнению с обычными диодами имеет достаточно низкое регламентированное напряжение пробоя (при обратном включении) и может поддерживать это напряжение на постоянном уровне при значительном изменении силы обратного тока. Материалы, используемые для создания p-n перехода стабилитронов, имеют высокую концентрацию примесей. Поэтому, при относительно небольших обратных напряжениях в переходе возникает сильное электрическое поле, вызывающее его электрический пробой, в данном случае являющийся обратимым (если не наступает тепловой пробой вследствие слишком большой силы тока).
Обозначение стабилитрона на принципиальных схемах
Обозначение двуханодного стабилитрона на принципиальных схемах
Типовая схема включения стабилитрона
В основе работы стабилитрона лежат два механизма:
Несмотря на схожие результаты действия, эти механизмы различны, хотя и присутствуют в любом стабилитроне совместно, но преобладает только один из них. У стабилитронов до напряжения 5,6 вольт преобладает туннельный пробой с отрицательным температурным коэффициентом, выше 5,6 вольт доминирующим становится лавинный пробой с положительным температурным коэффициентом. При напряжении, равном 5,6 вольт, оба эффекта уравновешиваются, поэтому выбор такого напряжения является оптимальным решением для устройств с широким температурным диапазоном применения.
Пробойный режим не связан с инжекцией неосновных носителей заряда. Поэтому в стабилитроне инжекционные явления, связанные с накоплением и рассасыванием носителей заряда при переходе из области пробоя в область запирания и обратно, практически отсутствуют. Это позволяет использовать их в импульсных схемах в качестве фиксаторов уровней и ограничителей.
Существуют микросхемы линейных регуляторов напряжения с двумя выводами, которые имеют такую же схему включения, что и стабилитрон, и зачастую, такое же обозначение на электрических принципиальных схемах.
Стабистор (ранее нормистор) — полупроводниковый диод, в котором для стабилизации напряжения используется прямая ветвь вольт-амперной характеристики (то есть в области прямого смещения напряжение на стабисторе слабо зависит от тока). Отличительной особенностью стабисторов по сравнению со стабилитронами является меньшее напряжение стабилизации, которое составляет примерно 0,7 В. Последовательное соединение двух или трех стабисторов дает возможность получить удвоенное или утроенное значение напряжения стабилизации. Некоторые типы стабисторов представляют собой единый набор с последовательным соединением отдельных элементов.
Стабисторам присущ отрицательный температурный коэффициент сопротивления, то есть напряжение на стабисторе при неизменном токе уменьшается с увеличением температуры. В связи с этим стабисторы используют для температурной компенсации стабилитронов с положительным коэффициентом напряжения стабилизации.
Основная часть стабисторов — кремниевые диоды. Кроме кремниевых стабисторов промышленность выпускает и селеновые поликристаллические стабисторы, которые отличаются простотой изготовления, а значит, меньшей стоимостью. Однако, селеновые стабисторы имеют меньший гарантированный срок службы (1000 ч) и узкий диапазон рабочих температур.
Варикап (англ. vari(able) — переменный и cap(acity) — ёмкость) — полупроводниковый диод, работа которого основана на зависимости барьерной ёмкости p-n перехода от обратного напряжения. Варикапы применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.
Обозначение варикапа на схемах
При отсутствии внешнего напряжения в p-n-переходе существуют потенциальный барьер и внутреннее электрическое поле. Если к диоду приложить обратное напряжение, то высота этого потенциального барьера увеличится. Внешнее обратное напряжение отталкивает электроны в глубь n-области, в результате чего происходит расширение обеднённой области p-n перехода, которую можно представить как простейший плоский конденсатор, в котором обкладками служат границы области. В таком случае, в соответствии с формулой для ёмкости плоского конденсатора, с ростом расстояния между обкладками (вызванной ростом значения обратного напряжения) ёмкость p-n-перехода будет уменьшаться. Это уменьшение ограничено лишь толщиной базы, далее которой переход расширяться не может. По достижении этого минимума с ростом обратного напряжения ёмкость не изменяется.
Туннельный диод - полупроводниковый диод, в котором имеется очень узкий потенциальный барьер, препятствующий движению электронов. В основе работы лежит туннельный эффект благодаря которому электроны проникают сквозь барьер из одной разрешенной области энергии в другую.
Обозначение туннельного диода на схемах
Обычные диоды при увеличении прямого напряжения монотонно увеличивают пропускаемый ток. В туннельном диоде квантово-механическое туннелирование электронов добавляет горб в вольтамперную характеристику :
Вольт-амперная характеристика туннельного диода. В диапазоне напряжений от U1 до U2 дифференциальное сопротивление отрицательно.
при этом, из-за высокой степени легирования p и n областей, напряжение пробоя уменьшается практически до нуля. Туннельный эффект позволяет электронам преодолеть энергетический барьер в зоне перехода с шириной 50..150 A при таких напряжениях, когда зона проводимости в n-области имеет равные энергетические уровни с валентной зоной р-области. При дальнейшем увеличении прямого напряжения уровень Ферми n-области поднимается относительно р-области, попадая на запрещённую зону р-области, а поскольку тунелирование не может изменить полную энергию электрона, вероятность перехода электрона из n-области в p-область резко падает. Это создаёт на прямом участке вольт-амперной характеристики участок, где увеличение прямого напряжения сопровождается уменьшением силы тока. Данная область отрицательного дифференциального сопротивления и используется для усиления слабых сверхвысокочастотных сигналов.
Наибольшее распространение на практике получили туннельные диоды из Ge (германия), GaAs (арсенида галлия), а также из GaSb (антимонида галлия). Эти диоды находят широкое применение в качестве генераторов и высокочастотных переключателей, они работают на частотах, во много раз превышающих частоты работы тетродов, — до 30-100 ГГц.